skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Low, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Though some LHC searches for new physics exceed the TeV scale, there may be discoveries waiting to be made at much lower masses. We outline a simple quirk model, motivated by models that address the hierarchy problem through neutral naturalness, in which new electroweakly charged states with masses as low as 100 GeV have not yet been probed by the LHC. We also describe a novel search strategy which is complementary to current search methods. In particular, we show its potential to discover natural quirks over regions of parameter space that present methods will leave unexplored, even after the LHC’s high-luminosity run. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. There has been an increasing interest in exploring quantities associated with quantum information at colliders. We perform a detailed analysis describing how to measure the quantum discord in the top anti-top quantum state at the Large Hadron Collider (LHC). While for pure states, quantum discord, entanglement, and Bell nonlocality all probe the same correlations, for mixed states they probe different aspects of quantum correlations. The quantum discord, in particular, is interesting because it aims to encapsulate all correlations between systems that cannot have a classical origin. We employ two complementary approaches for the study of the top anti-top system, namely the decay method and the kinematic method. We highlight subtleties associated with measuring discord for reconstructed quantum states at colliders. Usually quantum discord is difficult to compute due to an extremization that must be performed. We show, however, that for the$$ t\overline{t} $$ t t ¯ system this extremization can be performed analytically and we provide closed-form formulas for the quantum discord. We demonstrate that with current LHC datasets, quantum discord can be observed at 3.6 – 5.7σ, depending on the signal region, with the decay method and can be measured at a precision of 0.1 – 0.2% with the kinematic method. At the high luminosity LHC, the observation of quantum discord is expected to be > 5σusing both the decay and kinematic methods and can be measured with a precision of 5% with the decay method and 0.05% with the kinematic method. Additionally, we identify the kinematic cuts at the LHC to isolate the$$ t\overline{t} $$ t t ¯ state that is separable but has non-zero discord. By systematically investigating quantum discord for the first time through a detailed collider analysis, this work expands the toolkit for quantum information studies in particle physics and lays the groundwork for deeper insights into the quantum properties in high-energy collisions. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Quantum entanglement is a fundamental property of quantum mechanics. Recently, studies have explored entanglement in the$$ t\overline{t} $$ t t ¯ system at the Large Hadron Collider (LHC) when both the top quark and anti-top quark decay leptonically. Entanglement is detected via correlations between the polarizations of the top and anti-top and these polarizations are measured through the angles of the decay products of the top and anti-top. In this work, we propose searching for evidence of quantum entanglement in the semi-leptonic decay channel where the final state includes one lepton, one neutrino, twob-flavor tagged jets, and two light jets from theWdecay. We find that this channel is both easier to reconstruct and has a larger effective quantity of data than the fully leptonic channel. As a result, the semi-leptonic channel is 60% more sensitive to quantum entanglement and a factor of 3 more sensitive to Bell inequality violation, compared to the leptonic channel. In 139 fb−1(3 ab−1) of data at the LHC (HL-LHC), it should be feasible to measure entanglement at a precision of ≲ 3% (0.7%). Detecting Bell inequality violation, on the other hand, is more challenging. With 300 fb−1(3 ab−1) of integrated luminosity at the LHC Run-3 (HL-LHC), we expect a sensitivity of 1.3σ(4.1σ). In our study, we utilize a realistic parametric fitting procedure to optimally recover the true angular distributions from detector effects. Compared to unfolding this procedure yields more stable results. 
    more » « less
  4. There is a significant interest in testing quantum entanglement and Bell inequality violation in high-energy experiments. Since the analyses in high-energy experiments are performed with events statistically averaged over phase space, the states used to determine observables depend on the choice of coordinates through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the t t ¯ threshold production for measuring Bell inequality violation, while at high transverse momentum the basis that aligns along the momentum direction of the top is optimal. Published by the American Physical Society2024 
    more » « less
  5. Particle collisions at the energy frontier can probe the nature of invisible dark matter via production in association with recoiling visible objects. We propose a new potential production mode, in which dark matter is produced by the decay of a heavy dark Higgs boson radiated from a heavyW′ boson. In such a model, motivated by left-right symmetric theories, dark matter would not be pair produced in association with other recoiling objects due to its lack of direct coupling to quarks or gluons. We study the hadronic decay mode viaW′ →tband estimate the LHC exclusion sensitivity at 95% confidence level to be 102− 105fb forW′ boson masses between 250 and 1750 GeV. 
    more » « less
  6. We study the prospects for probing the Nnaturalness solution to the electroweak hierarchy problem with future gravitational wave observatories. Nnaturalness, in its simplest incarnation, predictsNcopies of the Standard Model with varying Higgs mass parameters. We show that in certain parameter regions the scalar reheaton transfers a substantial energy density to the sector with the smallest positive Higgs squared mass while remaining consistent with bounds on additional effective relativistic species. In this sector, all six quarks are much lighter than the corresponding QCD confinement scale, allowing for the possibility of a first-order chiral symmetry-breaking phase transition and an associated stochastic gravitational wave signal. We consider several scenarios characterizing the strongly-coupled phase transition dynamics and estimate the gravitational wave spectrum for each. Pulsar timing arrays (SKA), spaced-based interferometers (BBO, Ultimate-DECIGO,μAres, asteroid ranging), and astrometric measurements (THEIA) all have the potential to explore new regions of Nnaturalness parameter space, complementing probes from next generation cosmic microwave background radiation experiments. 
    more » « less
  7. Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  8. A bstract The mirror twin Higgs model (MTH) is a solution to the Higgs hierarchy problem that provides well-predicted cosmological signatures with only three extra parameters: the temperature of the twin sector, the abundance of twin baryons, and the vacuum expectation value (VEV) of twin electroweak symmetry breaking. These parameters specify the behavior of twin radiation and the acoustic oscillations of twin baryons, which lead to testable effects on the cosmic microwave background (CMB) and large-scale structure (LSS). While collider searches can only probe the twin VEV, through a fit to cosmological data we show that the existing CMB (Planck18 TTTEEE+lowE+lowT+lensing) and LSS (KV450) data already provide useful constraints on the remaining MTH parameters. Additionally, we show that the presence of twin radiation in this model can raise the Hubble constant H 0 while the scattering twin baryons can reduce the matter fluctuations S 8 , which helps to relax the observed H 0 and S 8 tensions simultaneously. This scenario is different from the typical ΛCDM + ∆ N eff model, in which extra radiation helps with the Hubble tension but worsens the S 8 tension. For instance, when including the SH0ES and 2013 Planck SZ data in the fit, we find that a universe with ≳ 20% of the dark matter comprised of twin baryons is preferred over ΛCDM by ∼ 4 σ . If the twin sector is indeed responsible for resolving the H 0 and S 8 tensions, future measurements from the Euclid satellite and CMB Stage 4 experiment will further measure the twin parameters to O (1 − 10%)-level precision. Our study demonstrates how models with hidden naturalness can potentially be probed using precision cosmological data. 
    more » « less